EES CM : Énergies & matières à travers les révolutions industrielles

Adrien Luxey-Bitri Damien Marchal

1er octobre 2025

1

Au menu

Qu'est-ce que l'énergie?

Histoires industrielles
L'ère pré-industrielle
L'ère proto-industrielle
La Ie révolution industrielle
La IIe révolution industrielle
La IIIe révolution industrielle

Défis de l'ère moderne Crise climatique Limites extractives La gestion des déchêts

Le pari numérique

I - Qu'est-ce que l'énergie?

Énergie

Quantité de travail d'une force agissant sur une longueur :

$$[E] = [F] \times [L] = MLT^{-2} \times L = ML^2T^{-2}$$

Unités : joule (J), calorie (cal, kcal), watt-heure (Wh)...

1 Wh = énergie dispensée par 1 W de puissance en 1 h.

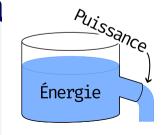
Énergie

Quantité de travail d'une force agissant sur une longueur :

$$[E] = [F] \times [L] = MLT^{-2} \times L = ML^2T^{-2}$$

Unités : joule (J), calorie (cal, kcal), watt-heure (Wh)...

1 Wh = énergie dispensée par 1 W de puissance en 1 h.


Puissance

 $\underline{\text{D\'ebit}}$ d'énergie (énergie par unité de temps) :

$$[P] = [E]/[T] = ML^2T^{-3}$$

Unité : watt (W)

$$1 W = 1 J/s$$
 $1 Wh = 3600 J$

Exemples de puissance

Chez moi, par semaine :	Puissance	Durée	Énergie/sem.
Raspberry Pi	1.15 W	24/7	193.2 Wh
Ordi portable	15 W	60 h	900 Wh
Aspirateur	1 kW	1 h	1 kWh
2× serveurs M82 [Deu20]	60 W	24/7	10 kWh
Eau chaude	1-2 kW	?	\sim 20kWh
Total d'après relevé EDF			42 kWh
Humain (2000 kcal = 2.3 kWh)	\sim 95 W	24/7	\sim 16 kWh

Exemples de puissance

Chez moi, par semaine :	Puissance	Durée	Énergie/sem.
Raspberry Pi	1.15 W	24/7	193.2 Wh
Ordi portable	15 W	60 h	900 Wh
Aspirateur	1 kW	1 h	1 kWh
2× serveurs M82 [Deu20]	60 W	24/7	10 kWh
Eau chaude	1-2 kW	?	\sim 20kWh
 Total d'après relevé EDF			 42 kWh
Humain (2000 kcal = 2.3 kWh)	\sim 95 W	24/7	\sim 16 kWh

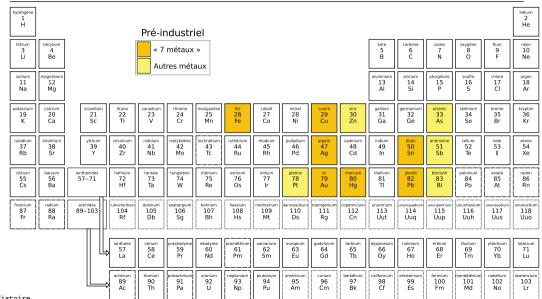
Autres exemples de puissance :

Panneau solaire domestique (crète)	$300-600 \text{W/m}^2$
Moteur Renault ZOE	100 kW
Éolienne EDF (crète)	1-3 MW
Centrale nucléaire REP	\sim 1 GW
Centrale nucléaire EPR	1.6 GW

II	-	Histoires	industrielles	

- Éolien : bateaux

- Solaire : champs & forêts


- Bois/Charbon : châleur

- Force animale & humaine

L'ère pré-industrielle

Matières

Une évolution progressive

- IXe-XIVe siècles : Moulins
 Mécanisation du travail :
 meule, pompe, textile, scierie...
- XIIe-XVIe siècles : Enclosures
 Répondent à l'accroissement de la demande en matières premières

Frilosité à l'innovation : Subordonée au maintien du tissu social

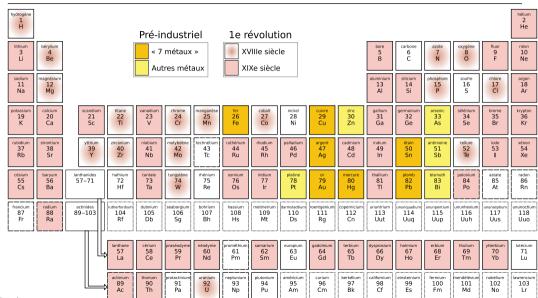

Une révolution plus nette

- La proto-industrie déboise les forêts
- XVIIe siècle :
 - La machine à vapeur accroît le rendement des mines de charbon
- XVIIIe siècle :
 - Accroissement exponentiel de la capacité de production
 - La colonisation assure l'approvisionnement en matières premières

Transport:

chemin de fer, bateau à vapeur

Communication : courrier puis télégraphe



Gloire au charbon!

- Conso. charbon UK 1820 pprox toute la superficie UK en forêts
- Total des réserves UK pprox prod. cumulée pétrole Arabie Saoudite
- Sidérurgie au coke de charbon décuple prod. de fer

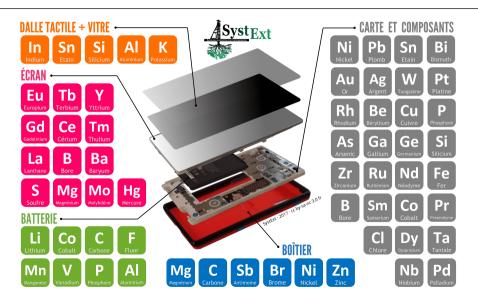
La Ie révolution industrielle

Matières [Les25]

Le pétrole passe en force

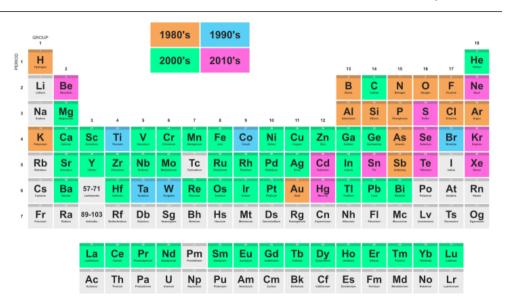
- Fin XIXe siècle : Peak Coal
 - Raréfaction des réserves européennes de charbon
 - Navy UK passe au mazout en 1914
- Atténuation des risques liés aux grèves
 - Liquide : moins de main-d'œuvre
 - Étirement de la masse salariale sur plusieurs pays

Transport : voiture, avion, bateau au fioul


Communication : téléphone

Évolution ou révolution?

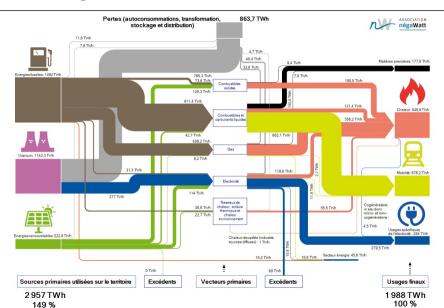
- Mi-XXe : l'informatique permet la communication numérique
- Début XXIe : crise climatique commande énergies décarbonées

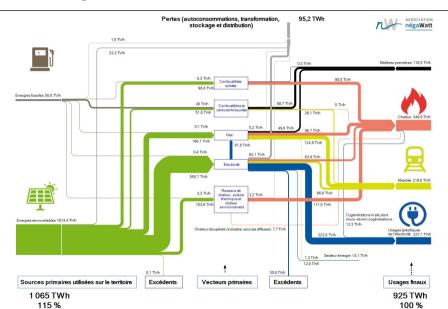

Communication : Internet

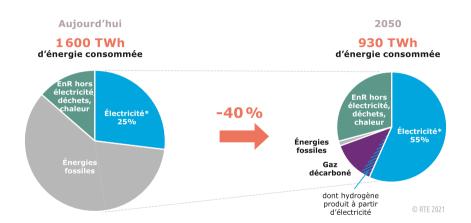
Énergies : éoliennes & panneaux solaires

La IIIe révolution industrielle

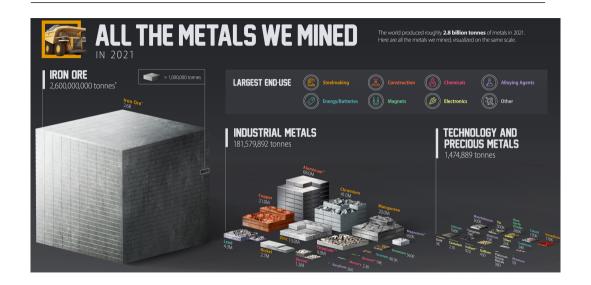
Matières [Sys17; Rou25]

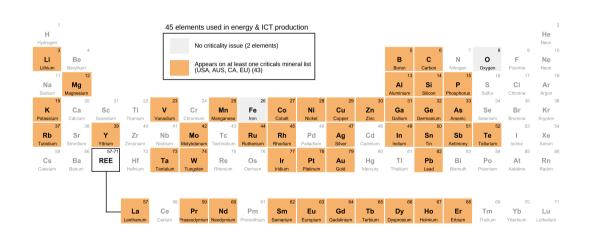


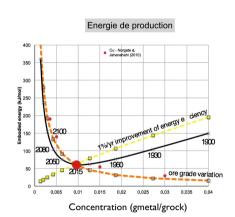

III - Défis de l'ère moderne

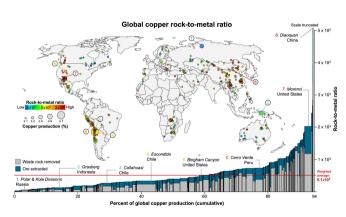

Crise climatique

III - Défis



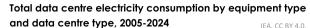


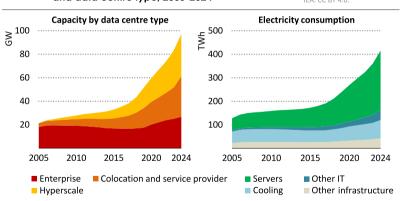

Durée de vie d'un panneau solaire = 25 ans

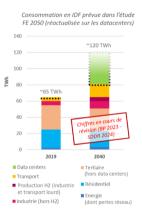

Limites extractives

III - Défis 22

Limites extractives

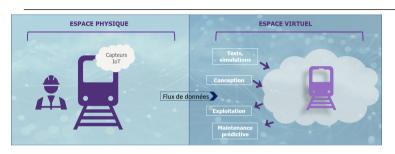

III - Défis 25

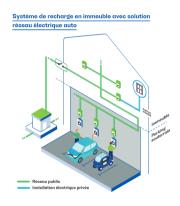




La gestion des déchêts

IV -	Le	pari	numérique	





Le pari numérique

Des promesses de gain [Rif12; Pat+22; Ene24]

IV - Le pari numérique

La demande énergétique de l'IA est assurée par des génératrices au gaz

That's all folks!
Slides sur https://luxeylab.net

Références I

[Rif12] Jeremy Rifkin, La Troisième Révolution Industrielle, Les Liens Qui Libèrent, fév. 2012, ISBN : 978_2_918597_47_6 [Jar14] François Jarrige. Technocritiques : Du Refus Des Machines à La Contestation Des Technosciences. Éditions La Découverte, fév. 2014, ISBN: 978-2-7071-9032-1, URL: https://www.editionsladecouverte.fr/technocritiques-9782707178237 (vu le 30/09/2025). [M.J17] Timothy Mitchell et Christophe Jaquet, Carbon Democracy : Le Pouvoir Politique à l'ère du Pétrole, Québec : La Decouverte Editions, 2017, ISBN: 978-2-7071-9586-9. [Sys17] Systext. Des métaux dans mon smartphone, avr. 2017. URL : https://www.systext.org/sites/all/animationreveal/mtxsmp/ (vu le 07/10/2024). [Vid19] Olivier Vidal, Énergie versus Matières Premières : La Transition Est-Elle Réellement Possible ?, juill. 2019, URL: https://www.voutube.com/watch?v=TxT7HD4rzP4 (vu le 11/12/2022). [Deu20] DEUXFLEURS. Consommation électrique. 2020. URL: https://guide.deuxfleurs.fr/infrastructures/energie/ (vu le 29/09/2024). [nég21] NÉGAWATT, 5. Bilans énergie/matière du scénario, Scénario négaWatt 2022, négaWatt, oct. 2021, URL : https://www.negawatt.org/IMG/pdf/scenario-negawatt-2022-rapport-complet-partie5.pdf (vu le 30/09/2025). [RTE21] RTE. Futurs Énergétiques 2050. Rapport Exécutif. Paris. oct. 2021. URL : https://rte-futursenergetiques2050.com/ (vu le 04/12/2024). [Nas+22] Nedal T. Nassar et al., « Rock-to-Metal Ratio : A Foundational Metric for Understanding Mine Wastes », À : Environmental Science & Technology (mai 2022), ppi : 10.1021/acs.est.1c07875. [Pat+22] David PATTERSON et al.. « The Carbon Footprint of Machine Learning Training Will Plateau. Then Shrink ». À:

Computer 55 (juill. 2022), ppr : 10.1109/MC.2022.3148714.

Références II

[Cer+23]

[Les25]

uml : https://inria.hal.science/hal-04709741 (vu le 07/10/2024). [IEA23] IEA. World Energy Outlook 2023, rapp. tech., OECD, 2023, URL : https://origin.jea.org/reports/world-energy-outlook-2023 (vu le 01/10/2024). [Lau23] Séverine Laurent, Perspectives de raccordement de data center en Ile-de-France, rapp. tech., RTE, nov. 2023. [Ene24] ENEDIS, Le pilotage de la charge des véhicules électriques, rapp. tech., avr. 2024, p. 28, url : https://www.enedis.fr/sites/default/files/documents/pdf/enedis-rapport-pilotage-de-la-recharge-de-vehiculeselectriques-2024-web-v2.pdf?VersionId=vJcrPgDftRIKBaIOcb7rPZw61XpvSK00 (vu le 01/07/2025). [Min24] MINISTÈRE DE L'ÉCOLOGIE. Chiffres clés de l'énergie, rapp. tech., 2024, URL : https://www.statistiques.developpement-durable.gouv.fr/edition-numerique/chiffres-cles-energie-2024/ (vu le 23/09/2024). [Int25] INTERNATIONAL ENERGY AGENCY, Energy and AI, World Energy Outlook Special Report, IEA, avr. 2025, URL:

Sophie CERF et al., Untangling the Critical Minerals Knot: When ICT Hits the Energy Transitions, dec. 2023.

[Mar25] Laura Paddison Marsh Rene, Elon Musk Is Building 'the World's Biggest Supercomputer.' It's Powered with Dozens of Gas-Powered Turbines, mai 2025, URL: https://www.cnn.com/2025/05/19/climate/xai-musk-memphis-turbines-pollution (vu le 30/09/2025).

LES ÉLÉMENTS CHIMIQUES, Propriétés - Date de Découverte, Site Documentaire, 2025, URL : https://www.elementschimiques.fr/?fr/proprietes/generalites/date-de-decouverte (vu le 30/09/2025).

https://www.iea.org/reports/energy-and-ai (vu le 01/07/2025).

[Rou25] Gauthier ROUSSILHE, GPU et IA gen face à l'histoire environnementale du numérique / Gauthier Roussilhe, mars 2025, URL: https://gauthierroussilhe.com/articles/la-phase-g-les-gpu-et-les-ia-generatives-comme-nouvelle-phase-de-l-histoire-environnementale-de-la-numerisation-partie-1 (vu le 30/09/2025).