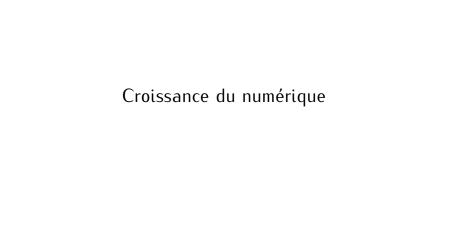
EES CM5 Dynamique des usages du numérique

Adrien Luxey-Bitri Damien Marchal

Univ Lille - FST - FIL

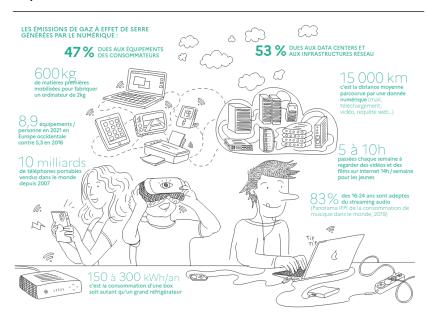
16 octobre 2024

1

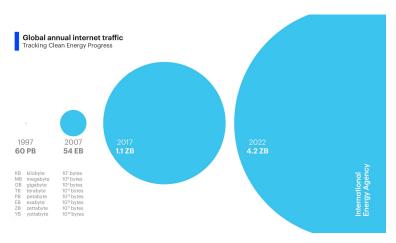

Au menu

Croissance du numérique

Comptabilité environnementale


Prospective

Analyse dynamique



Rappel : Ordres de grandeur

10 ^{±1} 10 ^{±2}	Déca Hecto	déci centi	
10 ^{±3}	kilo	milli	1 kW = aspirateur
10 ^{±6}	Méga	micro	1 MW = éolienne (crète)
10 ^{±9}	Giga	nano	384 Mm = dist. Terre-Lune 1-100 μ m = Celulle bio. 4 G@ dans IPv4 (2 ³²) 149 Gm = dist. Terre-Soleil 3 nm = Gravure Apple A18
10 ^{±12}	Téra	pico	
10 ^{±15}	Péta	femto	
10 ^{±18}	Exa	Atto	1 Eflop = Frontier HPC
10 ^{±21}	Zetta	zepto	•
10 ^{±24}	Yotta	yocto	1 Yo = Stockage NSA@Utah
10 ^{±27}	Ronna	ronto	-
10 ^{±30}	Quetta	quecto	10 ⁸ Q@ dans IPv6 (2 ¹²⁸)

Progression du trafic Internet

Progression de 8 % par an

Croissance exponentielle

$$u_{n+1} = C \times u_n \iff u_n = u_0 \times C^n$$

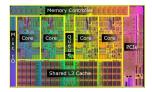
Q. Si le num. croît de 8 %/an, en combien de temps double-t-il?

7

Croissance exponentielle

$$u_{n+1} = C \times u_n \iff u_n = u_0 \times C^n$$

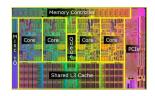
Q. Si le num. croît de 8 %/an, en combien de temps double-t-il?


R. $1.08^9 = 1.99$ \rightarrow En 9 ans.

7

Lois exponentielles du numérique

Loi de Moore

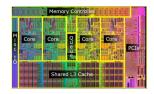

- « Puissance calcul double tous 18 mois. »
 - 1 en 1970
 - 2 en 1971
 - $\sim 1M \text{ en } 2000$
 - $\sim 50G$ ajd.

Lois exponentielles du numérique

Loi de Moore

- « Puissance calcul double tous 18 mois. »
 - 1 en 1970
 - 2 en 1971
 - $\sim 1M \text{ en } 2000$
 - $\sim 50G$ ajd.

Capacité datacenters

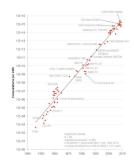

- « Capacité stockage double tous 15 mois. »
 - 1 en 2005
 - 16 en 2010
 - \sim 8k ajd.

Lois exponentielles du numérique

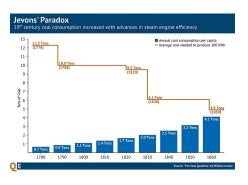
Loi de Moore

- « Puissance calcul double tous 18 mois. »
 - 1 en 1970
 - 2 en 1971
 - $\sim 1M \text{ en } 2000$
 - $\sim 50G$ ajd.

Capacité datacenters


- « Capacité stockage double tous 15 mois. »
 - 1 en 2005
 - 16 en 2010
 - \sim 8k ajd.

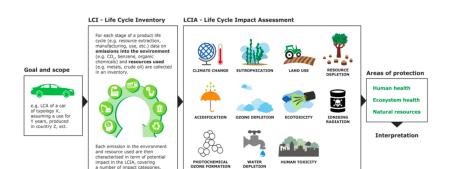
Loi de Koomey

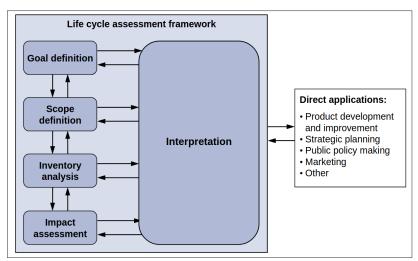

« Calcul/élec double tous 18 mois. »

Vrai depuis 1950.

L'efficacité ne suffit pas

Effet rebond

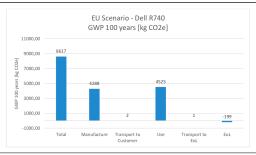



"One more lane will fix it."

Comment observer l'impact du domaine?

Comptabilité environnementale

Analyse de Cycle de Vie (ACV)


Framework for life cycle assessment (from ISO 14040:2006; modified)

Impacts directs et indirects

(D'abord appliqué aux GES.)

Scope	Cause	Exemples
1 2 3	Directe Conso. d'énergie Autres	Pétrole, gaz, charbon GES de l'élec. consommée Amont : transport, fabrication Aval : usage du produit/serv.

Serveur Dell & Fairphone

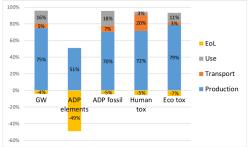
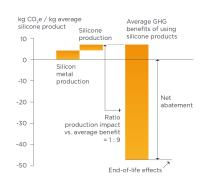


Figure 1 - Relative impacts of Fairphone 4 per life cycle phase

Production Si: 1.9 Mt./an

Émissions directes (scope 1)

- Prod. Si métal : 4 t. CO_2/t . Si \rightarrow 7.6 Mt. CO_2/an


Conso. élec. (scope 2)

- Prod. Si métal : \sim 6 t. CO₂/t. Si → 11.4 Mt. CO₂/an

Scope 3

- Joints fenêtres : -12 Mt. CO₂e/an
- Panneaux solaires : -9 Mt./an

— …

Limites

Conclusion

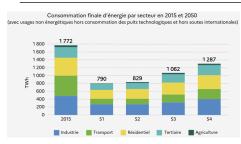
- On observe ce qu'on mesure
- Ne capture que le présent

Comment observer les effets indirects?

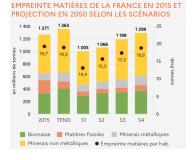
La prévision est difficile

surtout lorsqu'elle concerne l'avenir.

(Pierre Dac)


Analyse par scénarios

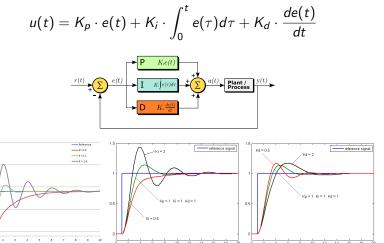
Transition(s) 2050 - ADEME

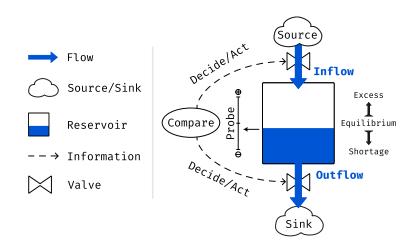

Analyse par scénarios

Transition(s) 2050 - ADEME

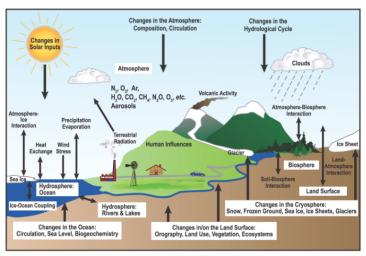
Analyse dynamique

La théorie du contrôle

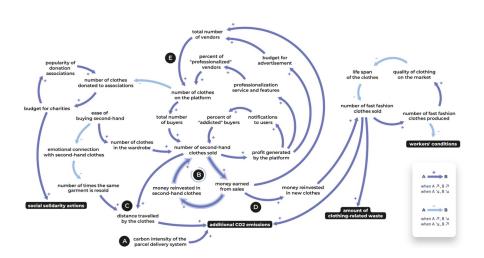



Une histoire militaire

Le contrôleur PID


1.6

Réservoirs



Il y a un modèle pour ça

Source: IPCC AR4 (2007) FAQ 1.2 Fig. 1.

Exemple: Vinted

Références

[de 75]	Joël de Rosnay, Le Macroscope. Vers Une Vision Globale, Le Seuil, mai 1975.
[Ber+19]	BERND BRANDT et al., Silicon-Chemistry Carbon Balance, 2019, URL: https://www.silicones.eu/wp-content/uploads/2019/05/SIL_exec-summary_en.pdf (vu le 03/10/2024).
[Thi19]	THINKSTEP, Life Cycle Assessment of Dell R740, Life Cycle Assessment, juin 2019, URL: https://www.delltechnologies.com/asset/en-us/products/servers/technical-support/Full_LCA_Dell_R740.pdf (vu le 16/03/2023).
[ADE21]	ADEME, La Face Cachée Du Numérique, rapp. tech., jan. 2021.
[SPB22]	David SÁNCHEZ, Marina PROSKE et Sarah-Jane BAUR, Life Cycle Assessment of the Fairphone 4, rapp. tech., Berlin: Fraunhofer IZM, mars 2022.
[Odo23]	Loraine Odot, La méthode des scénarios : un outil d'aide à la planification stratégique, oct. 2023, URL : https://www.polytechnique-insights.com/tribunes/societe/la-methode-des-scenarios-un-outil-daide-a-la-planification-strategique/ (vu le 16/10/2024).
[ADE24]	ADEME, Transition(s) 2050, rapp. tech., 2024, URL: https://www.ademe.fr/les-futurs-en-transition/les-scenarios/?tabname=climat.
[Ekc+24]	David Ekchalzer et al., « Decision-Making under Environmental Complexity : The Need for Moving from Avoided Impacts of ICT Solutions to Systems Thinking Approaches », À : ICT4S (2024).
[24a]	<pre>« Préfixes du Système international d'unités », À : Wikipédia (août 2024), URL : https://fr.wikipedia.org/w/index.php?title=Pr%C3%A9fixes_du_Syst%C3%A8me_international_d%27unit%C3%A9s&oldid=218117800 (vu le 15/10/2024).</pre>
[24b]	« Proportional-Integral-Derivative Controller », À: Wikipedia (oct. 2024), URL: https://en.wikipedia.org/w/index.php?title=Proportional%E2%80%93integral%E2%80%93derivative_controller&oldid=1250109285 (vu le 15/10/2024).